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Improvements in sensor accuracy, greater convenience and ease of use, and
expanding reimbursement have led to growing adoption of continuous glucose
monitoring (CGM). However, successful utilization of CGM technology in routine
clinical practice remains relatively low. This may be due in part to the lack of clear
and agreed-upon glycemic targets that both diabetes teams and people with
diabetes can work toward. Although unified recommendations for use of key CGM
metrics have been established in three separate peer-reviewed articles, formal
adoption by diabetes professional organizations and guidance in the practical
application of thesemetrics in clinical practice have been lacking. In February 2019,
the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened
an international panel of physicians, researchers, and individuals with diabetes
who are expert in CGM technologies to address this issue. This article summarizes
the ATTD consensus recommendations for relevant aspects of CGM data utilization
and reporting among the various diabetes populations.

Adoption of continuous glucose monitoring (CGM), which includes both real-time
CGM (rtCGM) and intermittently scanned CGM (isCGM), has grown rapidly over
the past few years as a result of improvements in sensor accuracy, greater
convenience and ease of use, and expanding reimbursement. Numerous studies
have demonstrated significant clinical benefits of CGM use in people with
diabetes regardless of insulin delivery method (1–15). In many countries, the
benefits and utility of CGM are now recognized by national and international
medical organizations for individuals with insulin-requiring diabetes and/or those
at risk for hypoglycemia (16–21). However, despite increased CGM adoption
(22,23), successful utilization of CGM data in routine clinical practice remains
relatively low. This may be due in part to the lack of clear and agreed-upon
glycemic targets toward which both diabetes teams and people with diabetes can
work.
In 2012 the Helmsley Charitable Trust sponsored the first expert panel to

recommend the standardization of CGMmetrics and CGM report visualization (24).
This was followed by a series of CGM consensus statements refining the core CGM
metrics, but the conclusions were never in alignment. In 2017, several articles
supported use of systematic approaches to CGM data evaluation (18–20). To date,
the key CGM metrics remain as unified recommendations in three separate peer-
reviewed articles, yet formal adoption by diabetes professional organizations and
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guidance in the practical application of
these metrics in clinical practice have
been lacking (19).
In February 2019, the Advanced Tech-

nologies & Treatments for Diabetes
(ATTD) Congress convened an interna-
tional panel of individuals with diabetes
and clinicians and researchers with ex-
pertise in CGM. Our objective was to
develop clinical CGM targets to supple-
ment the currently agreed-upon metrics
for CGM-derived times in glucose ranges
(within target range, below target range,
above target range) in order to pro-
vide guidance for clinicians, researchers,
and individuals with diabetes in using,
interpreting, and reporting CGM data
in routine clinical care and research.
Importantly, in order to make the rec-
ommendations generalizable and compre-
hensive, the consensus panel included
individuals living with diabetes and had
international representation from physi-
cians and researchers from all geographic
regions.
The panel was divided into subgroups

to review literature and provide recom-
mendations for relevant aspects of CGM
data utilization and reporting among the
various diabetes populations. Long-term
trials demonstrating how CGM metrics
relate to and/or predict clinical outcomes
have not been conducted, and many of

the published reports assessed here are
not at the highest evidence level (25).
However, there is suggestive evidence
from a number of recent studies, including
a cross-sectional study correlating current
retrospective 3-day time in target range
with varying degrees of diabetes retinop-
athy (26) and an analysis of the 7-point
self-monitored blood glucose (SMBG)
data from the Diabetes Control and Com-
plications Trial (DCCT) (27), showing cor-
relations of time in target range (70–
180 mg/dL [3.9–10.0 mmol/L]) with di-
abetes complications. Relationships be-
tween time in target range and A1C
(26,27) and number of severe and non-
severe hypoglycemic events (28–32) have
also been observed. Recommendations
fromeach subgroupwerepresented to the
full panel and voted upon. This article
summarizes the consensus recommenda-
tions and represents the panel members’
evaluation of the issues.

NEED FOR METRICS BEYOND A1C

A1C is currently recognized as the key
surrogate marker for the development of
long-termdiabetes complications in peo-
ple with type 1 and type 2 diabetes and
has been used as the primary end point
for many CGM studies (1,3,4,6,33,34).
While A1C reflects average glucose over
the last 2–3 months, its limitation is the

lack of information about acute glycemic
excursions and the acute complications
of hypo- and hyperglycemia. A1C also
fails to identify the magnitude and fre-
quency of intra- and interday glucose
variation (35,36). Moreover, certain con-
ditions such as anemia (37), hemoglo-
binopathies (38), iron deficiency (39),
and pregnancy (40) can confound A1C
measurements. Importantly, as reported
by Beck et al. (41), the A1C test can fail at
times to accurately reflect mean glucose
even when none of those conditions are
present. Despite these limitations, A1C is
the only prospectively evaluated tool
for assessing the risk for diabetes com-
plications, and its importance in clinical
decision making should not be under-
valued. Rather, the utility of A1C is
further enhanced when used as a com-
plement to glycemic data measured by
CGM.

Unlike A1Cmeasurement, use of CGM
allows for the direct observation of gly-
cemic excursions and daily profiles,
which can inform on immediate therapy
decisions and/or lifestyle modifications.
CGM also provides the ability to assess
glucose variability and identify patterns
of hypo- and hyperglycemia. However,
potential drawbacks of CGM use include
the need to be actively used in order to be
effective; that it may induce anxiety;
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that it may have accuracy limitations,
particularly with the delay in registering
blood glucose changes in dynamic sit-
uations; and that it can provoke aller-
gies. Another limitation of CGM is that
this technology is not yet widely avail-
able in several regions of the world.
Effective use of CGM data to optimize

clinical outcomes requires the user to
interpret the collected data and act upon
them appropriately. This requires 1) com-
mon metrics for assessment of CGM gly-
cemic status, 2) graphical visualization of
the glucose data and CGM daily profile,
and 3) clear clinical targets.

STANDARDIZATION OF CGM
METRICS

In February 2017, the ATTD Congress
convened an international panel of ex-
pert clinicians and researchers to define
core metrics for assessing CGM data (18)
(Table 1).
The list of core CGM metrics has now

been streamlined for use in clinical prac-
tice based on the expert opinion of this
international consensus group (18). Of
the 14 core metrics, the panel selected
that 10 metrics that may be most useful
in clinical practice (Table 2).
Fundamental to accurate and mean-

ingful interpretation of CGM is ensuring
that adequate glucose data are available
forevaluation.As shown in studies,.70%

use of CGM over the most recent 14 days
correlates strongly with 3 months of mean
glucose, time in ranges, and hyperglyce-
mia metrics (42,43). In individuals with
type 1 diabetes, correlations are weaker
for hypoglycemia and glycemic variabil-
ity; however, these correlations have
not been shown to increase with longer
sampling periods (43). Longer CGM data
collection periods may be required for
individuals with more variable glycemic
control (e.g., 4 weeks of data to in-
vestigate hypoglycemia exposure).

TIME IN RANGES

The development of blood glucose test-
ing provided individuals with diabetes
the ability to obtain immediate informa-
tion about their current glucose levels
and adjust their therapy accordingly.
Over the past decades, national and in-
ternational medical organizations have
been successful in developing, harmo-
nizing, and disseminating standardized
glycemic targets based on risk for acute
and chronic complications. CGM tech-
nology greatly expands the ability to
assess glycemic control throughout the
day, presenting critical data to inform
daily treatment decisions and quantify-
ing time below, within, and above the
established glycemic targets.

Although each of the core metrics
established in the 2017 ATTD consensus
conference (18) provides important in-
formation about various aspects of gly-
cemic status, it is often impractical to
assess and fully utilize many of these
metrics in real-world clinical practices. To

streamline data interpretation, the con-
sensus panel identified “time in ranges”
as a metric of glycemic control that pro-
vides more actionable information than
A1C alone. The panel agreed that estab-
lishing target percentages of time in the
various glycemic rangeswith the ability to
adjust the percentage cut points to ad-
dress the specific needs of special di-
abetes populations (e.g., pregnancy,
high-risk) would facilitate safe and ef-
fective therapeutic decision making
within the parameters of the established
glycemic goals.

The metric includes three key CGM
measurements: percentage of readings
and time per day within target glucose
range (TIR), time below target glucose
range (TBR), and time above target glu-
cose range (TAR) (Table 3). The primary
goal for effective and safe glucose control
is to increase the TIR while reducing the
TBR. The consensus group agreed that
expressing time in the various ranges can
be done as the percentage (%) of CGM
readings, average hours and minutes
spent in each range per day, or both,
depending on the circumstances.

It was agreed that CGM-based glyce-
mic targets must be personalized to meet
the needs of each individual with diabe-
tes. In addition, the group reached con-
sensus on glycemic cutpoints (a target
range of 70–180 mg/dL [3.9–10.0 mmol/L]
for individuals with type 1 diabetes and
type 2 diabetes and 63–140 mg/dL [3.5–
7.8 mmol/L] during pregnancy, along
with a set of targets for the time per
day [% of CGM readings or minutes/

Table 1—Standardized CGM metrics

2017 international consensus on CGM
metrics (18)

1. Number of days CGM worn

2. Percentage of time CGM is active

3. Mean glucose

4. Estimated A1C

5. Glycemic variability (%CV or SD)

6. Time .250 mg/dL (.13.9 mmol/L)

7. Time .180 mg/dL (.10.0 mmol/L)

8. Time 70–180 mg/dL (3.9–10.0 mmol/L)

9. Time ,70 mg/dL (,3.9 mmol/L)

10. Time ,54 mg/dL (,3.0 mmol/L)

11. LBGI and HBGI (risk indices)

12. Episodes (hypoglycemia and
hyperglycemia) 15 min

13. Area under the curve

14. Time blocks (24-h, day, night)

Use of Ambulatory Glucose Profile (AGP)
for CGM report

CV, coefficient of variation; LBGI, low blood
glucose index; HBGI, high blood glucose
index.

Table 2—Standardized CGM metrics for clinical care: 2019
1. Number of days CGM worn (recommend 14 days) (42,43)

2. Percentage of time CGM is active (recommend 70% of
data from 14 days) (41,42)

3. Mean glucose

4. Glucose management indicator (GMI) (75)

5. Glycemic variability (%CV) target #36% (90)*

6. Timeaboverange(TAR):%ofreadingsandtime.250mg/dL
(.13.9 mmol/L) Level 2

7.Timeaboverange(TAR):%ofreadingsandtime181–250mg/dL
(10.1–13.9 mmol/L) Level 1

8. Time in range (TIR): %of readings and time 70–180mg/dL
(3.9–10.0 mmol/L) In range

9.Timebelowrange(TBR):%ofreadingsandtime54–69mg/dL
(3.0–3.8 mmol/L) Level 1

10. Timebelowrange (TBR):%of readingsandtime,54mg/dL
(,3.0 mmol/L) Level 2

Use of Ambulatory Glucose Profile (AGP) for CGM report

CV, coefficient of variation. *Some studies suggest that lower %CV targets (,33%) provide
additional protection against hypoglycemia for those receiving insulin or sulfonylureas (45,90,91).
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hours]) individuals with type 1 diabetes
and type 2 diabetes (Table 3) and women
during pregnancy (Table 4) should strive
to achieve. It should be noted that pre-
meal and postprandial SMBG targets
remain for diabetes in pregnancy (44),
in addition to the new CGM TIR targets
for overall glycemia.
Although the metric includes TIR, TBR,

and TAR, achieving the goals for both TBR
and TIR would result in reduced time
spent above range and thereby improve
glycemic control. However, some clinicians
may choose to target the reduction of the
high glucose values and minimize hypo-
glycemia, thereby arriving at more time in
the target range. In both approaches, the
first priority is to reduce TBR to target
levels and thenaddress TIRorTAR targets.
Note that for people with type 1 di-

abetes, the targets are informed by the
ability to reach the targets with hybrid
closed-loop therapy (11), the first exam-
ple of which is now commercially avail-
able with several more systems in final
stages of testing. Importantly, recent
studies have shown the potential of

reaching these targets with CGM in in-
dividuals using multiple daily injections
(6). In type 2 diabetes, there is generally
less glycemic variability andhypoglycemia
than in type 1 diabetes (45). Thus, people
with type 2 diabetes can often achieve
more time in the target range while
minimizing hypoglycemia (4). As demon-
strated by Beck et al. (4), individuals with
type 2 diabetes increased their TIR by
10.3% (from 55.6% to 61.3%) after
24 weeks of CGM use with slight reduc-
tions in TBR.Most recently, the beneficial
effects of new medications, such as so-
dium–glucose cotransporter 2 agents
have helped individuals with type 1 di-
abetes increase TIR (46–48). Targets for
type 1 diabetes and type 2 diabetes were
close enough to combine into one set of
targets, outside of pregnancy.

Another way to visualize the CGM-
derived targets for the four categories of
diabetes is shown in Fig. 1,which displays
and compares the targets for TIR (green),
TBR (two categories in light and dark
red), and TAR (two categories in yellow
and orange). It becomes clear at a glance

that there are different expectations for
the various time in ranges relating to
safety concerns and efficacy based on
currently available therapies andmedical
practice.

CLINICAL VALIDITY OF MEASURES

To fundamentally change clinical care
with use of the new metrics, it would
be important to demonstrate that the
metrics relate to and predict clinical
outcomes. In this regard, longer-term
studies relating to time spent within
specific CGM glycemic ranges, diabetes
complications, and other outcomes are
required. However, there is evidence
from a number of recent studies that
have shown correlations of TIR (70–
180 mg/dL [3.9–10.0 mmol/L]) with di-
abetes complications (49,50) as well as
a relationship between TIR and A1C
(26,27). Although evidence regarding TIR
for older and/or high-risk individuals is
lacking, numerous studies have shown
the elevated risk for hypoglycemia in
these populations (51–56). Therefore,
we have lowered the TIR target from

Table 3—Guidance on targets for assessment of glycemic control for adults with type 1 or type 2 diabetes and older/high-risk
individuals

Diabetes group

TIR TBR TAR

% of readings;
time per day Target range

% of readings;
time per day Below target level

% of readings;
time per day Above target level

Type 1*/type 2 .70%;
.16 h, 48 min

70–180 mg/dL
(3.9–10.0mmol/L)

,4%;
,1 h

,70 mg/dL
(,3.9 mmol/L)

,25%;
,6 h

.180 mg/dL
(.10.0 mmol/L)

,1%;
,15 min

,54 mg/dL
(,3.0 mmol/L)

,5%;
,1 h, 12 min

.250 mg/dL
(.13.9 mmol/L)

Older/high-risk#
type 1/type 2

.50%;

.12 h
70–180 mg/dL
(3.9–10 mmol/L)

,1%;
,15 min

,70 mg/dL
(,3.9 mmol/L)

,10%;
,2 h, 24 min

.250 mg/dL
(.13.9 mmol/L)

Each incremental 5% increase in TIR is associatedwith clinically significant benefits for individuals with type 1 or type 2 diabetes (26,27). *For age,25
years, if the A1C goal is 7.5%, set TIR target to approximately 60%. See the section CLINICAL APPLICATION OF TIME IN RANGES for additional information
regarding target goal setting in pediatric management. #See the section OLDER AND/OR HIGH-RISK INDIVIDUALS WITH DIABETES for additional information
regarding target goal setting.

Table 4—Guidance on targets for assessment of glycemic control during pregnancy

Diabetes group

TIR TBR TAR

% of readings;
time per day Target range

% of readings;
time per day

Below target
level

% of readings;
time per day

Above target
level

Pregnancy,
type 1§

.70%;
.16 h, 48 min

63–140 mg/dL†
(3.5–7.8mmol/L†)

,4%;
,1 h

,63 mg/dL†
(,3.5 mmol/L†)

,25%;
,6 h

.140 mg/dL
(.7.8 mmol/L)

,1%;
,15 min

,54 mg/dL
(,3.0 mmol/L)

Pregnancy,
type 2/GDM§

See PREGNANCY

section
63–140 mg/dL†
(3.5–7.8mmol/L†)

See PREGNANCY

section
,63 mg/dL†

(,3.5 mmol/L†)
See PREGNANCY

section
.140 mg/dL
(.7.8 mmol/L)

,54 mg/dL
(,3.0 mmol/L)

Each incremental 5% increase in TIR is associated with clinically significant benefits for pregnancy in women with type 1 diabetes (59,60). †Glucose
levels are physiologically lower during pregnancy. §Percentages of TIR are based on limited evidence. More research is needed.
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.70% to .50% and reduced TBR to
,1% at ,70 mg/dL (,3.9 mmol/L) to
place greater emphasis on reducing hy-
poglycemia with less emphasis on main-
taining target glucose levels (Table 3).

Type 1 Diabetes and Type 2 Diabetes

Association With Complications

Associations between TIR and progres-
sion of both diabetic retinopathy (DR)
and development of microalbuminuria
were reported by Beck et al. (50), using
7-point blood glucose profiles from the
DCCT data set to validate the use of TIR
as an outcomemeasure for clinical trials.
Their analysis showed that the hazard
rate for retinopathy progression in-
creased by 64% for each 10% reduction
in TIR. The hazard rate for microalbumin-
uria development increased by 40%
for each 10% reduction in TIR. A post
hoc analysis of the same DCCT data
set showed a link between glucose of
,70 mg/dL (,3.9 mmol/L) and ,54
mg/dL (,3.0 mmol/L) and an increased
risk for severe hypoglycemia (57).
Similar associations between DR and

TIRwere reported in a recent study by Lu
et al. (49) in which 3,262 individuals with
type 2 diabetes were evaluated for DR,
which was graded as non-DR, mild non-
proliferative DR (NPDR), moderate NPDR,
or vision-threatening DR. Results showed

that individuals with more advanced DR
spent significantly less time within target
range (70–180 mg/dL [3.9–10.0 mmol/L])
and that prevalence of DR decreased with
increasing TIR.

Relationship Between TIR and A1C

Analyses were conducted utilizing data-
sets from four randomized trials encom-
passing 545 adults with type 1 diabetes
who had central laboratory measure-
ments of A1C (26). TIR (70–180 mg/dL
[3.9–10.0 mmol/L]) of 70% and 50%
strongly corresponded with an A1C of
approximately 7% (53 mmol/mol) and 8%
(64 mmol/mol), respectively. An increase
in TIR of 10% (2.4 h per day) corre-
sponded to a decrease in A1C of approx-
imately 0.5% (5.0 mmol/mol); similar
associations were seen in an analysis
of 18 randomized controlled trials (RCTs)
by Vigersky and McMahon (27) that in-
cluded over 2,500 individuals with type 1
diabetes and type 2 diabetes over a wide
range of ages and A1C levels (Table 5).

Pregnancy
During pregnancy, the goal is to safely
increase TIR as quickly as possible, while
reducing TAR and glycemic variability.
Data from the first study of longitudinal
CGM use in pregnancy demonstrated a
13–percentage point increase in TIR (43%
to 56% TIR 70–140mg/dL [3.9–7.8mmol/L])

(58). TBR ,50 mg/dL was reduced
from 6% to 4%, although the higher
TBR ,70 mg/dL was high (13–15%) us-
ing older-generation sensors. With im-
proved sensor accuracy, recent type 1
diabetes pregnancy studies report a
lower threshold of ,63 mg/dL (,3.5
mmol/L) for TBR and $63 mg/dL
($3.5 mmol/L) for TIR (59,60). Data
from Sweden, and the Continuous Glu-
cose Monitoring in Women With Type 1
Diabetes in Pregnancy Trial (CONCEPTT)
control group, report 50% TIR in the
first trimester, improving to 60% TIR
in the third trimester, reflecting contem-
porary antenatal care. Of note, these
data confirm that the TBR ,63 mg/dL
(,3.5 mmol/L) recommendation of ,4%
is safely achievable, especially after the
first trimester. Furthermore, 33% of
women achieved the recommendation of
70% TIR 63–140mg/dL (3.5–7.8mmol/L)
in the final (.34) weeks of pregnancy.
Preliminary data suggest that closed-
loop systemsmay allow pregnant women
to safely achieve 70% TIR at an earlier
(.24 weeks) stage of gestation (61,62).
Law et al. (63) analyzed data from two
early CGM trials (64,65) describing the
associations between CGM measures
and risk of large-for-gestational-age (LGA)
infants. Taken together, the Swedish and
CONCEPTTdata confirmthata5–7%higher

Figure 1—CGM-based targets for different diabetes populations.
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TIR during the second and third trimesters
is associated with decreased risk of LGA
and neonatal outcomes includingmacro-
somia, shoulder dystocia, neonatal hy-
poglycemia, and neonatal intensive care
admissions. More data are needed to
define the clinical CGM targets for preg-
nant women with type 2 diabetes, who
spend one-third less time hyperglycemic
than women with type 1 diabetes and
achieve TIR of 90% (58). Because of the
lack of evidence on CGM targets for
women with gestational diabetes mellitus
(GDM) or type 2 diabetes in pregnancy,
percentages of time spent in range, below
range, and above range have not been
included in this report. Recent data sug-
gest that even more stringent targets
(66) and greater attention to overnight
glucose profiles may be required to
normalize outcomes in pregnant women
with GDM (63).

Older and/or High-Risk Individuals
With Diabetes
Older and/or high-risk individuals with
diabetes are at notably higher risk for
severe hypoglycemia due to age, dura-
tion of diabetes, duration of insulin
therapy, and greater prevalence of hy-
poglycemia unawareness (51–55). The
increased risk of severe hypoglycemia
is compounded by cognitive and physical
impairments and other comorbidities
(53,56). High-risk individuals include
those with a higher risk of complica-
tions, comorbid conditions (e.g., cogni-
tive deficits, renal disease, joint disease,
osteoporosis, fracture, and/or cardio-
vascular disease), and those requiring

assisted care, which can complicate
treatment regimens (56). Therefore,
when setting glycemic targets for high-
risk and/or elderly people, it is important
to individualize and be conservative,
with a strong focus on reducing the per-
centage of time spent ,70 mg/dL (,3.9
mmol/L) and preventing excessive hy-
perglycemia.

STANDARDIZATION OF CGM DATA
PRESENTATION

As noted above, in 2013 a panel of
clinicians with expertise in CGM pub-
lished recommendations for use of the
Ambulatory Glucose Profile (AGP) as a
template for data presentation and vi-
sualization. Originally created by Mazze
et al. (67), the standardized AGP report
was further developed by the Interna-
tional Diabetes Center and now incor-
porates all the core CGM metrics and
targets along with a 14-day composite
glucose profile as an integral component
of clinical decision making (24). This
recommendation was later endorsed
at the aforementioned international
consensus conference on CGM metrics
(18) and is referenced as an example
in the American Diabetes Association
2019 “Standards of Medical Care in Di-
abetes” (16) and in an update to the
American Association of Clinical Endo-
crinologists consensus on use of CGM
(68). TheAGP report, in slightlymodified
formats, has been adopted by most of
the CGM device manufacturers in their
download software. An example of the
AGP report, updated to incorporate tar-
gets, is presented in Fig. 2. In the AGP

report, glucose ranges are defined as
“Very High” (Level 2), “High” (Level 1),
“Low” (Level 1), and “Very Low” (Level 2).
An “mmol/L” version is provided in
Supplementary Fig. 1.

There is a general consensus that a
useful CGM report is one that can be
understood by clinicians and people with
diabetes. While there may be some terms
(e.g., glucose variability) that are less
familiar to many people with diabetes, a
single-page report that the medical team
can reviewandfile in theelectronicmedical
record and that can be used as a shared
decision-making tool with people with di-
abetes was considered to be of value
(69–72). More detailed reports (e.g., ad-
justabledata ranges,detaileddaily reports)
should remain available for individualized
review by or with people with diabetes.

Clinical Application of Time in Ranges
Despite its demonstrated value, clinical
utilization of CGM data has remained
suboptimal. Although time constraints
and reimbursement issues are clearly
obstacles, clinician inexperience in data
interpretation and lack of standardiza-
tion software for visualization of CGM
data have also played a role (73). The
proposed standardized report enables
clinicians to readily identify important
metrics such as the percentage of time
spent within, below, and above each
individual’s target range, allowing for
greater personalization of therapy through
shared decision making.

Using the standardized report, the
clinician can also address glucose vari-
ability (e.g., the coefficient of variation

Table 5—Estimate of A1C for a given TIR level based on type 1 diabetes and type 2 diabetes studies

Beck et al. (26) (n = 545 participants with type 1 diabetes)
Vigersky and McMahon (27) (n = 1,137

participants with type 1 or type 2 diabetes)

TIR 70–180 mg/dL
(3.9–10.0 mmol/L)

A1C, %
(mmol/mol)

95% CI for predicted
A1C values, %

TIR 70–180 mg/dL
(3.9–10.0 mmol/L)

A1C, %
(mmol/mol)

20% 9.4 (79) (8.0, 10.7) 20% 10.6 (92)

30% 8.9 (74) (7.6, 10.2) 30% 9.8 (84)

40% 8.4 (68) (7.1, 9.7) 40% 9.0 (75)

50% 7.9 (63) (6.6, 9.2) 50% 8.3 (67)

60% 7.4 (57) (6.1, 8.8) 60% 7.5 (59)

70% 7.0 (53) (5.6, 8.3) 70% 6.7 (50)

80% 6.5 (48) (5.2, 7.8) 80% 5.9 (42)

90% 6.0 (42) (4.7, 7.3) 90% 5.1 (32)

Every 10% increase in TIR = ;0.5% (5.5 mmol/mol) A1C reduction Every 10% increase in TIR = ;0.8%
(8.7 mmol/mol) A1C reduction

The difference between findings from the two studies likely stems from differences in number of studies analyzed and subjects included (RCTs
with subjects with type 1 diabetes vs. RCTs with subjects with type 1 or type 2 diabetes with CGM and SMBG).
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Figure 2—Ambulatory Glucose Profile.
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[%CV] metric) (74) or use the glucose
management indicator (GMI) metric (75)
to discuss the possible discrepancies
noted in glucose exposure derived from
CGMdataversus the individual’s laboratory-
measured A1C (41,76). With appropriate
educational materials, time, and experi-
ence, clinicians will develop a systematic
approach to CGM data analysis and the
most effective ways to discuss the data
with patients in person or remotely.

Goal Setting

Numerous studies have demonstrated
the clinical benefits of early achievement
of near-normal glycemic control in indi-
viduals with type 1 diabetes and type 2
diabetes (77–83). However, when advis-
ing people with diabetes, goal-setting
must be collaborative and take into ac-
count the individual needs/capabilities of
each patient and start with the goals that
are most achievable. An early study by
DeWalt et al. (84) found that setting small,
achievable goals not only enhances peo-
ple’s ability to copewith their diabetes, but
that people with diabetes who set and
achieved their goals often initiated addi-
tional behavioral changes on their own.
One approach to consider is the SMART
goal (Specific, Measurable, Achievable,
Relevant,Time-bound) intervention,which
is directly applicable to setting targets for
time in ranges. First described by Lawlor
and Hornyak in 2012 (85), this approach
incorporates four key components of
behavioral change relevant to goal set-
ting: 1) the goal is specific and defines
exactly what is to be achieved, 2) the goal
is measurable and there is tangible evi-
dence when it has been achieved, 3) the
goal is achievable but stretches the pa-
tient slightly so that he/she feels chal-
lenged, and 4) the goal should be
attainable over a short period of time.
Effective goals should utilize CGMdata

to identify specific instances for the
patient to take measurable action to
prevent hypoglycemia. Although analysis
of the AGP reports provides an oppor-
tunity for meaningful discussion, individ-
uals should be counseled to look at
patterns throughout the day to see
when low glucose events are occurring
and make adjustments in their therapy
to reduce these events.
When applying the CGM metrics in

clinical practice, it may be more mean-
ingful and motivating to communicate
to people with diabetes the importance

of working to reduce the time spent
,70 mg/dL (,3.9 mmol/L) to less
than 1 h per day and time spent
,54 mg/dL (,3.0 mmol/L) to less
than 15 min per day, rather than us-
ing ,4% and ,1%, respectively, as the
goal.However,asdiscussedearlier, targets
must be personalized to meet the needs
and capabilities of each person, focusing
on small steps and small successes. Indi-
viduals with diabetes should work with
their provider and/or educator to develop
a SMART goal to reduce TBR.

Individualized goals are particularly
important for pediatric and young adult
populations. The International Society
for Pediatric and Adolescent Diabetes
recommends that targets for individuals
#25 years of age aim for the lowest
achievable A1C without undue exposure
to severe hypoglycemia or negative ef-
fects on quality of life and burden of care
(86). An A1C target of 7.0% (53 mmol/
mol) canbeused in children, adolescents,
and adults #25 years old who have
access to comprehensive care (86).
However, a higher A1C goal (e.g., ,7.5%
[,58 mmol/mol]) may be more appro-
priate in the following situations: inability
to articulate hypoglycemia symptoms,
hypoglycemia unawareness, history of
severe hypoglycemia, lack of access to
analog insulins and/or advanced insulin
delivery technology, or inability to regu-
larly check glucose (86). This would
equate to a TIR target of;60% (Table 4).

The consensus group recognized that
achieving the targets for the various time
in ranges is aspirational in some situa-
tions, and many individuals will require
ongoing support, both educational and
technological, from their health care
team. Importantly, as demonstrated by
Beck et al. (26), Vigersky and McMahon
(27), and Feig et al. (59), even small,
incremental improvements yield signifi-
cant glycemic benefits. Therefore, when
advising individuals with diabetes (par-
ticularly children, adolescents, and high-
risk individuals) about their glycemic goals,
it is important to take a stepwise ap-
proach, emphasizing that what may ap-
pear to be small, incremental successes
(e.g., 5% increase in TIR) are, in fact,
clinically significant in improving their
glycemia (26,27,59). However, when coun-
seling women planning pregnancy and
pregnant women, greater emphasis should
be placed on getting to goal as soon as
possible (59,60).

CONCLUSIONS

Use of CGM continues to expand in
clinical practice. As a component of di-
abetes self-management, daily use of
CGM provides the ability to obtain im-
mediate feedback on current glucose
levels as well as direction and rate of
change in glucose levels. This information
allows people with diabetes to optimize
dietary intake and exercise, make in-
formed therapy decisions regarding
mealtime and correction of insulin dos-
ing, and, importantly, react immediately
and appropriately to mitigate or prevent
acute glycemic events (87–89). Retro-
spective analysis of CGM data, using
standardized data management tools
such as the AGP, enables clinicians
and people with diabetes to work col-
laboratively in identifying problem areas
and then set achievable goals (70–72).
We conclude that, in clinical practice,
time in ranges (within target range, be-
low range, above range) are both appro-
priate and useful as clinical targets and
outcome measurements that comple-
ment A1C for a wide range of people
with diabetes and that the target values
specified in this article should be con-
sidered an integral component of CGM
data analysis and day-to-day treatment
decision making.
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